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Abstract-Pressure-drop oscillations and the Ledinegg instability are analyzed from the perspective of 
dynamical systems theory. An integral formulation is developed to model the two-phase flow system. 
Instability criteria independent of the actual two-phase flow model are derived for the two phenomena. It 
is shown that the pressure-drop oscillation limit-cycles occur after a super-critical Hopf bifurcation. In an 
extension of the analysis, an effort is made to clarify the mechanisms of the pressure-drop type oscillations 
and Ledinegg instability. The two phenomena are classified from the angle of bifu~ation theory, and the 

differences are outlined. 

1. INTRODUCTION 

TWO-PHASE flow systems are prone to dynamic and 
static instabilities of many kinds [I, 21. In the last few 
decades a considerable amount of research work has 
been carried out in this field all over the world, and 
most instabilities are more-or-less completely under- 
stood. This paper focuses on the pressure-drop oscil- 
lations, and aims at proving some theoretical results 
for these. 

This work has been motivated principally by two 
ideas. The first source of motivation was the lack of 
the proof of existence and uniqueness of pressure- 
drop oscillations. The existence and uniqueness was 
shown for the case of density-wave oscillations, with 
the help of the Hopf-bifurcation theorem [3]. How- 
ever, in the case of pressure-drop oscillations, the 
analytical proofs have been limited to showing that 
operation on the negative-slope region of the pressure- 
drop vs mass flow rate characteristics is unstable in 
the presence of a compressible volume upstream or 
within the Row circuit [l, 21. The nonlinear stability 
analysis is carried a step further in this paper with the 
help of a simple model. 

The second source of motivation was to develop a 
unified framework for analyzing the pressure-drop 
oscillations and the Ledinegg (excursive) instability. 
Both are caused by attempts to operate on the nega- 
tive-slope region of the pressure-drop vs mass flow 
rate characteristics. However, the mechanisms for 
both are completely different. Thus it was also sought 
to clarify the differences between the two phenomena 
mathematically. 

2. FORMU~TION OF THE MODEL 

2.1. Integral formulation 
The governing equations are transient equations in 

one spatial dimension, and they are coupled to each 

other. In order to simplify the problem, the help of 
the integral method is sought. The integral method is 
one of the most powerful tools used for the purpose 
of reducing the dimensionality of complex problems. 
In essence, the integral method consists of integrating 
the governing equations over the domain of interest 
along one of the independent variables, so as to sub- 
stitute the continuous dependence of parameters on 
that variable by an average dependence. 

Figure 1 is a schematic diagram of the experimental 
apparatus, indicating the main variables of the math- 
ematical analysis. The governing equations are inte- 
grated over the flow lengths (between the main and 
surge tanks, as well as between the surge tank and the 
exit), to get three coupled time-de~ndent (first-order, 
nonlinear) equations. The following assumptions are 
made : 

(1) At any instant, the mass velocity is uniform in 
the two flow circuits; i.e. Gi characterizes the mass 
velocity between the main tank and the surge tank 
(the ‘external’ circuit), and G, characterizes the mass 
velocity between the surge tank and the exit (the ‘inter- 
nal’ circuit). 

(2) The frictional resistance can be represented in 
terms of a friction factor similar to the Blasius, which 
can be obtained as a suitable function of the thermo- 
dynamic and flow properties. 

(3) The total pressure-drop between the main and 
surge tank is assumed to be concentrated at the inlet 
restriction. 

(4) The main tank and the system exit are main- 
tained at constant pressures, Pi and P,, respectively. 
This corresponds closeIy to the actual experimental 
system. 

The three equations are obtained as follows : 
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D inner diameter of the heater tube fm] I time [s] 
Eu Euler number, P,/(G&/p,) V* steady-state volume of the gas in the surge 

[dimensionless] tank [m”] 

.f friction factor [dimensionless] X quality of the liquid-vapor mixture 

F, two-phase flow friction multiplier [dimensionless]. 
[dimensionless] 

Fr Froude number, (G~/~,)~(g~“) Greek symbols 
[dimensionless] A friction number, 2$2,/D [dimensionless] 

9 gravitational acceleration, 9.806 m2 s- ’ A eigenvalues 
G fluid mass velocity, pu [kg m- ‘s-- ‘1 P density [kg m - ‘1 

Gi inlet fluid mass velocity into surge tank rI1 outer loop time constant, p, * LJG,, [s] 

Ekgm -2s-‘l 212 inner loop time constant, pi + L,/G,, [s] 

G0 outlet fluid mass velocity from surge tank tj void fraction [dimensionless]. 

Fgm -2s-‘l 
K resistance coefficient for inlet restriction Subscripts 

[dimensionless] e exit condition 
P surge tank pressure [Pa] f fluid parameter 

PC exit pressure [Pa] i inlet condition 

P, main tank pressure [Pa] I liquid 
steady-state surge tank pressure [Pa] 0 steady-state or operating condition 
heat input into the fluid [Wj V vapor, vertical. 

Inlet mass velocity 

L,d$ (Pi_P)_y$ 

Outlet mass vefocity 

(1) L2~=~P-P,)-p,,gL-~ 

Surge tank dynamics [4] 

dP 
-_=p 2 (Gi -Go)A, 
dt POV”P, . 

System exit, P. 

t 

Exit restriction 

f&it plenum f 

(2) 

0 Inlet plenum 

FIG. 1, Schematic diagram of the boiling flow system 

The details of this derivation are presented in 
Appendix A. 

In this equation, F,,, is the so-called two-phase flow 
multiplier, and takes care of the concentrated press- 
ure-drop at the exit restriction. Typically, F, can be 
adequately represented as a quadratic or a cubic func- 
tion of the exit quality [2]. For convenience, equation 
(3) is rewritten in the following compact notation : 

L dC"=(P-f')_f(G Q)s 
’ dt e ” p, (4) 

where 

2.2. Nonlinear simulation of pressure-drop oscillations 
The model presented by equations (l)-(3) is vali- 

dated first with respect to experimental results. The 
solution at the operating point is computed by setting 
the time derivatives to zero. Then the inlet mass vel- 
ocity is perturbed, and the equations are integrated 
simultaneously using the fourth-order Runge-Kutta 
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FIG. 2. Sample oscillation results: comparison with exper- 
imental results. Heat input Q = 400 W, inlet liquid (Freon- 
11) temperature = 23°C operating mass flow rate = 11.89 g 
s- ‘, heater : coated nichrome, i.d. = 7.5 mm, o.d. = 9.5 mm. 

scheme, to give rise to the pressure-drop oscillations. 
Figure 2 shows a sample of the predicted wave-forms 
of the pressure-drop oscillations, along with exper- 
imentally obtained recordings. The experimental 
results are taken from ref. [5]. It can be seen that 
despite the simplicity of the model, the essence of the 
pressure-drop oscillations is captured. (The super- 
imposed high-frequency oscillations seen in the exper- 
imental results are the so-called density-wave oscil- 
lations, which result from delays in kinematic wave 
propagation. The present model is not designed to 
handle these.) 

2.3. Nondimensionalization of governing equations 
It is convenient to nondimensionalize equations 

(l)-(3) of the model using the following scale par- 
ameters, namely, the surge tank pressure and the mass 
velocity at the operating point : 

(i) pressure : PO ; 
(ii) mass velocity : G,, ; 

to get the following : 

dP 
& = PZ(Gi_G,) 

dG 
2 = B[Eu(P- I’,) -f(&, Q)c,‘] 
dr (8) 

wheref(eO, Q) is the nondimensionalized total press- 
ure-drop in the heated channel, expressed as 

{ 

(1 -xe>’ Pd 
- (1++--+&+A . 

1 
(9) 

The overbars indicate the nondimensional quantities, 

and M= P,/(G&Ipr)), Fr(= (G&/pi)/@L,)) and 
A( = 2f L,/D) are the Euler number, Froude number 
and friction number, respectively. 

The average density over the vertical segment of the 
loop is 

1 

s 

L” 
Pa” = - 

L 0 
p dz. 

Also, r( = t/q) is the nondimensional time, and 

A=& and B=5 
‘tl I 712 

where ts(= V,,p,/A,G,) is the time constant of 
the surge tank, and r,,(= p,*L,/G,,) and 
r,2( = p,. L,/G,,) are the outer and inner loop time 
constants, respectively. 

The time, t, in these equations is nondimen- 
sionalized with respect to r5,, since experimental evi- 
dence suggests that the time period of pressure-drop 
oscillations is a function of the time constant of the 
surge tank. 

This scheme of nondimensionalization is similar to 
that used in ref. [3]. 

3. BIFURCATION ANALYSIS 

3.1. Linearized stability analysis 

To analyze the stability of the system of equations 
developed in the last section, we first form the Jacob- 
ian of the system, evaluate it at the operating point 
and find the eigenvalues of this Jacobian. The nature 
and signs of the eigenvalues allow us to draw impor- 
tant conclusions about the stability of the solution, as 
well as about the expected solution in the unstable 
region [6,7]. At the operating point, Gi = G,, = P = 1, 
and the characteristic equation is formulated as 

where 

13+e,12+e,l+e3 =0 (10) 

w+zf(l,Q)] (11) 

e2 = (A+ B)Eu+2ABKi 
df (1, Q, 
7 o +2f(lvQ) 1 

(12) 

d!(l,Q) 
dc, +2f(lTQ) . 1 (13) 
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Stability of the system of equations is assured when 
real parts of all eigenvalues are negative. A possible 
bifurcation point-where the nature of the solution 
shows a qualitative change, e.g. from a stable point 
to a limit cycle-is located by identifying a root of the 
characteristic equation for which the real part is zero 
[7]. To locate the bifurcation points of the present 
system, we use the Hurwitz theorem, which states that 
the necessary and sufficient conditions for the real 
parts of all eigenvalues to be negative are [S] : 

(a) e, > 0, which leads to 

2A Ki + 3 
d!(l> Q) 

_____ +?f(l.Q) > 0; ---he, I 
(b) (eiel-eJ > 0, to be taken up in the next sub- 

section ; and 
(c) e,(e,e,--e,) > 0, which results in 

i 
2Ki+*f(I;Q,+~ >o. 

0 1 
When A = 3 (a good approximation of our exper- 

imental set-up), criteria (a) and (c) become identical, 
and can be rewritten as 

(d) 3f’(l 
7 t 

Q)+ w Q) 
dG 

1 
> --2Ki (14) 

* 

and criterion (b) simplifies to 

(e) 
VU, Q) 

Yu>Q)+- d(G, 

1 

1 -Eu 
> 2--KiA’ (15) 

In this way, we have obtained criteria for stable 
operation of the given system. The point to be em- 
phasized here is that these criteria are independent oj 
the actual two-phase J4ow model used; which means 
that they can be used for, say, graphical determination 
of instability thresholds, based on experimental data. 

Towards this end, criteria (14) and (15) are re- 
converted to the dimensional form, and written in 
terms of the slopes of the steady-state pressure-drop 
vs mass flow rate characteristics. Figure 3 is plotted 
to check the theoretical predictions of the instability 
thresholds against experimental results. These thres- 
holds are determined by actually measuring the slopes, 
and comparing the value with that obtained by the 
stability criterion (b). In the case of our experimental 
conditions-i.e. with main tank and exit press- 
ures maintained at about 7 and 1.5 bar, respectively- 
the criteria for instability can be calculated to be of 
the following orders (in terms of the scales of Fig. 3) : 

g < -0(10-5)bar(gs-‘))’ forcriterion (15) 

and 

(pressure-drop oscillations) 

gi < -O(lO-‘)bar(gs-‘)-I forcriterion (14) 

(Ledinegg instability). 

The model predictions can be seen to be in good 
agreement with the experimental results. 

It is to be noted at this point that f’(1, Q) is always 
a positive number; however, with the addition of 
more and more heat into the system, the slope, i.e. 
df( 1, Q)/dG,, becomes more and more negative and 
leads to various bifurcations. When there is no heat 
input into the system, this slope is zero, and all stabil- 
ity conditions are identically satis~ed-which con- 
firms the common knowledge that single-phase sys- 
tems are always stable. It is easy to see that, as Q is 
increased from zero, the Hopf bifurcation occurs first. 
The saddie-node bifurcation occurs with further 
addition of heat, when the internal characteristics 
become steeper than the external As shown in Appen- 
dix B, criterion (c) corresponds to a saddle-node bi- 
furcation (analogous to a Ledinegg bifurcation). We 
now proceed to analyze criterion (b). 

3.2. Existence and uniqueness of pressure-drop oscil- 
lation limit cycles 

To prove the existence and uniqueness of these 
oscillations, we use the Hopf bifurcation theorem, 
proved by Hopf in 1942 [8]. An important question 
concerns the choice of the bifurcation parameter. It is 
well known that increasing the heat input, Q, into the 
system makes the slope of the pressure-drop char- 
acteristics more negative, and also that the pressure- 
drop oscillations are connected with this slope. There- 
fore, we choose Q as the bifurcation parameter. 

In the limiting case of stability, the inequality in (b) 
can be substituted by an equality. Using that relation, 
the main characteristic equation can be factorized to 
give 

leading to 

and 

@+e,)(1’+e,) = 0 

1, = -e, 

(16) 

(17) 

AZ,3 = +J(-6). (18) 

Since e2 is positive, a pair of eigenvalues crosses the 
imaginary axis at the point of incipient loss of stability. 
Differentiating equation (10) with respect to the bi- 
furcation parameter, we can evaluate &%JaQ, which 
can be shown to be 

an,_ -1 A@,e2-e3). aQ-iiaQ (19) 

The derivative of (e,e2-e,) is negative, since 
initially this quantity is greater than zero (e.g. when 
there is no heat input into the system); at the bi- 
furcation point it is zero ; and later becomes negative. 
Thus the eigenvalues cross the imaginary axis with 
positive speed. 

Finally, we show that this bifurcation is super-criti- 
cal, i.e. the periodic solutions lie on the unstable side. 
This would imply that the limit cycles are stable, and 



Pressure-drop oscillations and the Ledinegg instability 529 

Y.” 

I q=xl*c Heat inputs 
OQ= ow 
TO= 4oow 
q Q= 0oow 
.Q= 8oow 
AO-IOOOW 

- - m Theoretical 

ingie chennel system 
Heaterz awed nichrcnne 

10.0 16.0 20.0 26.0 30.0 36.0 40.0 4 

Maas flow rate (g s-‘1 

FIG. 3. Prediction of the thresholds of instability. Comparison with experimental results. 

all solutions would tend toward it for given operating 
conditions [3]. In order to show this exactly, we would 
need to reduce the given system of equations using 
the inter-manifold theory and then compute higher 
derivatives. However, since the derivative of the func- 
tion,f(G,, Q) (the nondimensionalized total pressure- 
drop in the heated channel), is not continuous at two 
points (namely, at exit quality 0 and l), it is not 
possible to perform these calculations. Therefore, we 
rely on indirect methods to show the suer-c~ticality 
of the bifurcation; specifically, we show that the 
amplitude of the oscillations grows as heat input is 
increased past the bifurcation point. 

Figure 4 shows the experimental results for the vari- 
ation of the amplitude of oscillations with heat input 
(taken from ref. [5]). It is evident that the aptitude 
increases roughly as the square root of the difference 

between the heat input and the heat input at the bi- 
furcation point (as shown by the fitted curve in the 
figure). Figure 5 shows the results of the present inte- 
gral model for the variation of the oscillation ampli- 
tudes very close to the bifurcation point. (This is 
shown because experimental data close to the bi- 
furcation point are not available.) Again, it is evident 
that, very close to the bifurcation point, the amplitude 
grows as heat input is increased, and that it has a 
square-root relationship with the heat input. Based 
on these two pieces of data, we can conclude that it is 
indeed a super-critical Hopf bifurcation. 

200 
t 

’ Data 

0-0 

Gwen ’ . 
FIG. 4. Variation of the ampiitude of pressure-drop oscil- 

lations with heat input. Experimental data. 

0 

Heat input 0 

FIG. 5. Variation of the amplitude of pressure-drop oscil- 
lations with heat input. Results of integrai model close to 

bifurcation point. 
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Table I. Pressure-drop oscillations and Ledinegg instability compared 
_.._ _-____-- 

Pressure-drop oscillations 
(I) Dynamic instability. 

(2) Conditions : fi) internal characteristics with negative slope ; 
(ii) external characteristics steeper than internal; 

(iii) compressible volume (e.g. surge tank) in the flow circuit. 

(3) Caused by a ~o~~b~~u~cu~joi? as the heat input is increased. 

(4) The standard way to eliminate pressure-drop oscillations is to make the slope of the internal character- 
istics positive (e.g. by internal throttling). 

T’e ted&egg ~~.~t~jI~t~ 
(1) Static instability. 

(2) Conditions: (i) internal characteristics with negative slope ; 
(ii) internal characteristics steeper than external ; 

(iii) multiple intersections of the internal and external characteristics. 

(3) Caused by a .~addle-nad~ ~~~rcutio~ as the beat input is increased till the internal characteristics 
intersect with the external. 

(4) The standard way to avoid the Ledinegg ins~bility is to make the slope of the external characteristics 
steeper than that of the internal. 

.--- 

We have seen that the pressure-drop oscillations 
and the Ledinegg instability are both related to the 
operation of the two-phase fiow system on the nega- 
tive-slope region. However, the crucial difference 
between the two is caused by the feedback effect of 
the surge tank, leading to os~ii~a~o~y behavior, as 
opposed to the excursiue behavior in the absence of 
the surge tank. These differences are reflected in the 
type of bifurcation that takes place at incipient insta- 
bility. Table 1 and Fig. 6 are developed to highlight 
these differences. The figures are developed to indicate 
the steady-state characteristics of the channel jinter- 
nal) and the pump (external), and also the unstable 
operating points. They are based on typical values of 
the parameters used in our experiments, e.g. ref. [5], 

4. CDNCLUDlNG REMARKS 

On the basis of the analysis carried out in this work, 
we can make the following remarks : 

(a) Stability criteria for the pressure-drop o&I- 
lations and the Ledinegg instability are derived in 
terms of the magnitude of the negative slope of the 
steady-state pressuredrop vs mass Bow rate char- 
acteristics, and thus are independent of the actual two- 
phase flow model used. 

(b) Pressure-drop limit cycles are generated after a 
super-critical Hqf ~i~~~.cuti~~ in the dynamics of 
the two-phase Aow system. It is to be noted that an 
excursive instability similar to the Ledinegg instability 
can occur at a su~ciently high heat input, even when 
there exists a compressible volume in the flow circuit. 

(c) The Ledinegg instability is a static instability 
caused by a saddle-node bifurcation. 

(d) The differences between the pressure-drop oscil- 

{a) Pressure-drop oscillations scenario 

I 
( \ 1 

0 10 25 30 

tvlass flow rate fQ s-l1 

FIG. 6. Schematic diagrams for the &abilities: (a) pressure- 
drop oscillations scenario ; (b) Ledinegg instability scenario. 
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lations and the Ledinegg instability are reflected in the 
differences in the type of bifurcation. 
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APPENDIX A. DERIVATION OF THE INTEGRAL 
MODEL 

A. 1. Between the main and surge tanks 
The flow here is single-phase liquid, and the flow is hori- 

zontal. Therefore, integration of the momentum equation 
gives 

L,$ = (P,-P)-K,Gp:? 

where K, is the combined inlet restriction coefficient, which 
takes care of the concentrated pressure-drop at the inlet 
valve, as well as the distributed frictional pressure-drop over 
the length of the tube. 

A.2. Between the surge tank and system exit 
In this part of the system heat is added, and there is a 

phase change. Integrating the momentum equation from the 

surge tank to the system exit, we get the total contributions of 
different mechanisms to the pressure-drop, i.e. gravitational, 
accelerational, frictional and the concentrated pressure-drop 
at the exit restriction, as 

L2Z = (P-P&p,,gL,-z 

642) 

These equations can be looked at from the viewpoint of 
force-balance. The first term on the right-hand side indicates 
the available pressure-drop, and the rest of the terms indicate 
the actual, instantaneous pressure-drop. The difference be- 
tween these two-the unbalanced pressure-drop-goes to 
accelerate the flow. 

APPENDIX B. ANALYSIS OF LEDINEGG 
INSTABILITY 

The so-called Ledinegg instability was first investigated by 
Ledinegg in 1938 [9]. Here we derive the same result in our 
notation for easier interpretation. The classical analysis is 
carried out for a loop similar to that analyzed here ; only the 
surge tank is not present in the loop. Therefore, the equation 
corresponding to the surge-tank dynamics (equation (2)) is 
eliminated. In addition, there is only one value of the mass 
velocity in the system; thus, Gi = G, = G. With this, the 
two mass velocity equations, equations (1) and (3), can be 
added-which in effect becomes a complete description of 
the system-to give 

Linearizing equation (Bl), we obtain 

(L,+L,)F=ldG 

where 

2G df(G>Q) G* 
(K,+/(G, Q,, x + -7 ; I (B3) 

The system is stable against infinitesimal perturbations 
only if 1 < 0, which gives us the condition for stability of the 
system 

(K, +f(G, Q)) F + se” ‘; 
I 

> 0. (B4) 

Comparing terms, it can be seen that the nondimensional 
stability criterion (c) derived in Section 3 is identical to this. 
Stating this in words, the system is stable if the external 
characteristics of the pump are steeper than the internal 
characteristics of the channel, which is a well-known result 
[l]. To put a finer point on the discussion, this instability 
may be termed as a ‘hydraulic-inertia-controlled’ Ledinegg 
instability (following the terminology in ref. [I]), since the 
heat input into the fluid is considered to be constant during 
the excursion. 

At incipient instability of this system, the external and 
internal characteristics are tangent to each other. As the 
external characteristics become flatter, they cut the internal 
characteristics at two points, one of which (the ‘original’ 
operating point) is unstable, and the other one is stable (see 
Fig. 6). In the dynamical systems parlance, this bifurcation 
is known as the tangent or saddle-node bifurcation [7, lo]. 
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ANALYSE DE BIFURCATION DES OSCILLATIONS DE PRESSION ET INSTABILITE 
DE LEDINEGG 

RCum&Les oscillations de perte de pression et l’instabilite de Ledinegg sont analysees par la thborie des 
systtmes dynamiques. Une formulation intigrale est developpee pour modtliser le systeme d’ecoulement 
diphasique. Des criteres d’instabilitt independants du modtle actuel d%coulement diphasique sont derives 
pour les deux phenomenes. On montre que les cycles limites de l’oscillation de perte de pression se 
produisent apres une bifurcation supercritique de Hopf. Dans un prolongement de l’analyse, on tente de 
clarifier les micanismes des oscillations de pression et de l’instabilite de Ledinegg. Les deux phbnomenes 

sont classes sous l’angle de la theorie de bifurcation et on souligne les differences. 

BIFURKATION BEI DRUCKVERLUST-OSZILLATIONEN UND DIE LEDINEGG- 
INSTABILITAT 

Zusanunenfasaung-Die Druckverlust-Oszillationen und die Ledinegg-Instabilitit werden vom Standpunkt 
der dynamischen Systemtheorie untersucht. Zur Beschreibung des zweiphasigen Striimungssystems wird 
eine integrale Form verwendet. Filr beide Phanomene wird ein Kriterium fur Instabilimt entwickelt, das 
unabhangig vom aktuellen Zweiphasenstrijmungs-Model1 ist. Es zeigt sich, dal3 nach einer iiberkritischen 
Hopf-Bifurkation die Grenzzyklen der Druckverlust-Oszillation auftreten. In Erweiterung der Analyse 
werden Anstrengungen zur Kllrung der Mechanismen der Druckverlust-Oszillationen und der Ledinegg- 
Instabilitit unternommen. Beide Phiinomene werden vom Standpunkt der Bifurkationstheorie klassitiz.iert; 

Unterschiede werden herausgearbeitet. 

PM@YPKAIQIOHHbI~ AHAJIH3 KOJIEBAHMR TIEPEIIA&A JIABJIEHWI H 
HEYCTO$iWIBOCfb JIEAHHEFFA 

~Haoctroue T~~~AHLUIH~HY~PUIX~HCT~M~~~W~~K)TC~K~~~~~AH~~~~~H~~~~~M~~ 

W iiQ’CTOk9HBOCTb &UiliWra. h3pB6OTBH WJiIib#8 tIOJ&XOLl K MOAeJUi~MEl5O cacTeMbl AlByX@UHsa. 

Te-ieHHE. JInn AByX HccJIe.lJyeMbrX aBJleHH* nonyrew KpHTePHA HeycTofhEBocTsi, He 3aBrfcme OT 

MOAeJDi lXBJlbHOI’0 ASfl&WiOl-0 TVieHHB. ~OKfttXlHO, 'IT0 I'IpeAeslbIibIe l&HKJlbl KOJle6iWUiii IIe&El.i~a 

AaBneHHK tia6JuoAamTca 3a 12~ep~Kpim~~KOfi Fim#iypralureti Xon@. KpoMe Toro, npeAnpEHKTa 

nonbmKa BbmHemKMeXam3hson rone6axti nepenaxamaneHHn a~eycrohi~ocmJle~erTa.&u~a 

KJlaCCH~HKaIlJiX060HXyKa3aHHblXKBJleHHfiCTO'iKH3~HHRTeOpHH 6y~~KELI&HOTMVleHbl~pa3JIElnr~ 
htewy HHMH. 


